Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparsity Based Poisson Denoising with Dictionary Learning (1309.4306v3)

Published 17 Sep 2013 in cs.CV and stat.ML

Abstract: The problem of Poisson denoising appears in various imaging applications, such as low-light photography, medical imaging and microscopy. In cases of high SNR, several transformations exist so as to convert the Poisson noise into an additive i.i.d. Gaussian noise, for which many effective algorithms are available. However, in a low SNR regime, these transformations are significantly less accurate, and a strategy that relies directly on the true noise statistics is required. A recent work by Salmon et al. took this route, proposing a patch-based exponential image representation model based on GMM (Gaussian mixture model), leading to state-of-the-art results. In this paper, we propose to harness sparse-representation modeling to the image patches, adopting the same exponential idea. Our scheme uses a greedy pursuit with boot-strapping based stopping condition and dictionary learning within the denoising process. The reconstruction performance of the proposed scheme is competitive with leading methods in high SNR, and achieving state-of-the-art results in cases of low SNR.

Citations (109)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.