Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Attribute-Efficient Evolvability of Linear Functions (1309.4132v2)

Published 16 Sep 2013 in cs.LG and q-bio.PE

Abstract: In a seminal paper, Valiant (2006) introduced a computational model for evolution to address the question of complexity that can arise through Darwinian mechanisms. Valiant views evolution as a restricted form of computational learning, where the goal is to evolve a hypothesis that is close to the ideal function. Feldman (2008) showed that (correlational) statistical query learning algorithms could be framed as evolutionary mechanisms in Valiant's model. P. Valiant (2012) considered evolvability of real-valued functions and also showed that weak-optimization algorithms that use weak-evaluation oracles could be converted to evolutionary mechanisms. In this work, we focus on the complexity of representations of evolutionary mechanisms. In general, the reductions of Feldman and P. Valiant may result in intermediate representations that are arbitrarily complex (polynomial-sized circuits). We argue that biological constraints often dictate that the representations have low complexity, such as constant depth and fan-in circuits. We give mechanisms for evolving sparse linear functions under a large class of smooth distributions. These evolutionary algorithms are attribute-efficient in the sense that the size of the representations and the number of generations required depend only on the sparsity of the target function and the accuracy parameter, but have no dependence on the total number of attributes.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.