Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recovery guarantees for exemplar-based clustering (1309.3256v2)

Published 12 Sep 2013 in stat.ML, cs.CV, and cs.LG

Abstract: For a certain class of distributions, we prove that the linear programming relaxation of $k$-medoids clustering---a variant of $k$-means clustering where means are replaced by exemplars from within the dataset---distinguishes points drawn from nonoverlapping balls with high probability once the number of points drawn and the separation distance between any two balls are sufficiently large. Our results hold in the nontrivial regime where the separation distance is small enough that points drawn from different balls may be closer to each other than points drawn from the same ball; in this case, clustering by thresholding pairwise distances between points can fail. We also exhibit numerical evidence of high-probability recovery in a substantially more permissive regime.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube