Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Inducing Honest Reporting Without Observing Outcomes: An Application to the Peer-Review Process (1309.3197v2)

Published 12 Sep 2013 in cs.MA, cs.AI, cs.DL, math.ST, and stat.TH

Abstract: When eliciting opinions from a group of experts, traditional devices used to promote honest reporting assume that there is an observable future outcome. In practice, however, this assumption is not always reasonable. In this paper, we propose a scoring method built on strictly proper scoring rules to induce honest reporting without assuming observable outcomes. Our method provides scores based on pairwise comparisons between the reports made by each pair of experts in the group. For ease of exposition, we introduce our scoring method by illustrating its application to the peer-review process. In order to do so, we start by modeling the peer-review process using a Bayesian model where the uncertainty regarding the quality of the manuscript is taken into account. Thereafter, we introduce our scoring method to evaluate the reported reviews. Under the assumptions that reviewers are Bayesian decision-makers and that they cannot influence the reviews of other reviewers, we show that risk-neutral reviewers strictly maximize their expected scores by honestly disclosing their reviews. We also show how the group's scores can be used to find a consensual review. Experimental results show that encouraging honest reporting through the proposed scoring method creates more accurate reviews than the traditional peer-review process.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube