Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Randomized Quantization and Source Coding with Constrained Output Distribution (1309.2915v2)

Published 11 Sep 2013 in cs.IT and math.IT

Abstract: This paper studies fixed-rate randomized vector quantization under the constraint that the quantizer's output has a given fixed probability distribution. A general representation of randomized quantizers that includes the common models in the literature is introduced via appropriate mixtures of joint probability measures on the product of the source and reproduction alphabets. Using this representation and results from optimal transport theory, the existence of an optimal (minimum distortion) randomized quantizer having a given output distribution is shown under various conditions. For sources with densities and the mean square distortion measure, it is shown that this optimum can be attained by randomizing quantizers having convex codecells. For stationary and memoryless source and output distributions a rate-distortion theorem is proved, providing a single-letter expression for the optimum distortion in the limit of large block-lengths.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.