Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Based Uplink Interference Management in 4G LTE Cellular Systems (1309.2543v1)

Published 10 Sep 2013 in cs.NI

Abstract: LTEs uplink (UL) efficiency critically depends on how the interference across different cells is controlled. The unique characteristics of LTEs modulation and UL resource assignment poses considerable challenges in achieving this goal because most LTE deployments have 1:1 frequency re-use, and the uplink interference can vary considerably across successive time slots. In this work, we propose LeAP, a measurement data driven machine learning paradigm for power control to manage up-link interference in LTE. The data driven approach has the inherent advantage that the solution adapts based on network traffic, propagation and network topology, that is increasingly heterogeneous with multiple cell-overlays. LeAP system design consists of the following components: (i) design of user equipment (UE) measurement statistics that are succinct, yet expressive enough to capture the network dynamics, and (ii) design of two learning based algorithms that use the reported measurements to set the power control parameters and optimize the network performance. LeAP is standards compliant and can be implemented in centralized SON (self organized networking) server resource (cloud). We perform extensive evaluations using radio network plans from real LTE network operational in a major metro area in United States. Our results show that, compared to existing approaches, LeAP provides a 4.9x gain in the 20th percentile of user data rate, and 3.25x gain in median data rate.

Citations (72)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.