Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Based Uplink Interference Management in 4G LTE Cellular Systems (1309.2543v1)

Published 10 Sep 2013 in cs.NI

Abstract: LTEs uplink (UL) efficiency critically depends on how the interference across different cells is controlled. The unique characteristics of LTEs modulation and UL resource assignment poses considerable challenges in achieving this goal because most LTE deployments have 1:1 frequency re-use, and the uplink interference can vary considerably across successive time slots. In this work, we propose LeAP, a measurement data driven machine learning paradigm for power control to manage up-link interference in LTE. The data driven approach has the inherent advantage that the solution adapts based on network traffic, propagation and network topology, that is increasingly heterogeneous with multiple cell-overlays. LeAP system design consists of the following components: (i) design of user equipment (UE) measurement statistics that are succinct, yet expressive enough to capture the network dynamics, and (ii) design of two learning based algorithms that use the reported measurements to set the power control parameters and optimize the network performance. LeAP is standards compliant and can be implemented in centralized SON (self organized networking) server resource (cloud). We perform extensive evaluations using radio network plans from real LTE network operational in a major metro area in United States. Our results show that, compared to existing approaches, LeAP provides a 4.9x gain in the 20th percentile of user data rate, and 3.25x gain in median data rate.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube