Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Compressed Sensing for Block-Sparse Smooth Signals (1309.2505v1)

Published 10 Sep 2013 in stat.ML, cs.IT, math.IT, math.ST, and stat.TH

Abstract: We present reconstruction algorithms for smooth signals with block sparsity from their compressed measurements. We tackle the issue of varying group size via group-sparse least absolute shrinkage selection operator (LASSO) as well as via latent group LASSO regularizations. We achieve smoothness in the signal via fusion. We develop low-complexity solvers for our proposed formulations through the alternating direction method of multipliers.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.