Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Contour Manifolds and Optimal Transport (1309.2240v1)

Published 9 Sep 2013 in math.DG and cs.CV

Abstract: Describing shapes by suitable measures in object segmentation, as proposed in [24], allows to combine the advantages of the representations as parametrized contours and indicator functions. The pseudo-Riemannian structure of optimal transport can be used to model shapes in ways similar as with contours, while the Kantorovich functional enables the application of convex optimization methods for global optimality of the segmentation functional. In this paper we provide a mathematical study of the shape measure representation and its relation to the contour description. In particular we show that the pseudo-Riemannian structure of optimal transport, when restricted to the set of shape measures, yields a manifold which is diffeomorphic to the manifold of closed contours. A discussion of the metric induced by optimal transport and the corresponding geodesic equation is given.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.