Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Regret-Based Multi-Agent Coordination with Uncertain Task Rewards (1309.1973v1)

Published 8 Sep 2013 in cs.AI

Abstract: Many multi-agent coordination problems can be represented as DCOPs. Motivated by task allocation in disaster response, we extend standard DCOP models to consider uncertain task rewards where the outcome of completing a task depends on its current state, which is randomly drawn from unknown distributions. The goal of solving this problem is to find a solution for all agents that minimizes the overall worst-case loss. This is a challenging problem for centralized algorithms because the search space grows exponentially with the number of agents and is nontrivial for standard DCOP algorithms we have. To address this, we propose a novel decentralized algorithm that incorporates Max-Sum with iterative constraint generation to solve the problem by passing messages among agents. By so doing, our approach scales well and can solve instances of the task allocation problem with hundreds of agents and tasks.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.