Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Throughput Maximization in the Speed-Scaling Setting (1309.1732v1)

Published 6 Sep 2013 in cs.DS

Abstract: We are given a set of $n$ jobs and a single processor that can vary its speed dynamically. Each job $J_j$ is characterized by its processing requirement (work) $p_j$, its release date $r_j$ and its deadline $d_j$. We are also given a budget of energy $E$ and we study the scheduling problem of maximizing the throughput (i.e. the number of jobs which are completed on time). We propose a dynamic programming algorithm that solves the preemptive case of the problem, i.e. when the execution of the jobs may be interrupted and resumed later, in pseudo-polynomial time. Our algorithm can be adapted for solving the weighted version of the problem where every job is associated with a weight $w_j$ and the objective is the maximization of the sum of the weights of the jobs that are completed on time. Moreover, we provide a strongly polynomial time algorithm to solve the non-preemptive unweighed case when the jobs have the same processing requirements. For the weighted case, our algorithm can be adapted for solving the non-preemptive version of the problem in pseudo-polynomial time.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube