Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Thermal Human face recognition based on Haar wavelet transform and series matching technique (1309.1156v1)

Published 4 Sep 2013 in cs.CV

Abstract: Thermal infrared (IR) images represent the heat patterns emitted from hot object and they do not consider the energies reflected from an object. Objects living or non-living emit different amounts of IR energy according to their body temperature and characteristics. Humans are homoeothermic and hence capable of maintaining constant temperature under different surrounding temperature. Face recognition from thermal (IR) images should focus on changes of temperature on facial blood vessels. These temperature changes can be regarded as texture features of images and wavelet transform is a very good tool to analyze multi-scale and multi-directional texture. Wavelet transform is also used for image dimensionality reduction, by removing redundancies and preserving original features of the image. The sizes of the facial images are normally large. So, the wavelet transform is used before image similarity is measured. Therefore this paper describes an efficient approach of human face recognition based on wavelet transform from thermal IR images. The system consists of three steps. At the very first step, human thermal IR face image is preprocessed and the face region is only cropped from the entire image. Secondly, Haar wavelet is used to extract low frequency band from the cropped face region. Lastly, the image classification between the training images and the test images is done, which is based on low-frequency components. The proposed approach is tested on a number of human thermal infrared face images created at our own laboratory and Terravic Facial IR Database. Experimental results indicated that the thermal infra red face images can be recognized by the proposed system effectively. The maximum success of 95% recognition has been achieved.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.