Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

Exactly scale-free scale-free networks (1309.0961v4)

Published 4 Sep 2013 in physics.soc-ph, cs.SI, and nlin.AO

Abstract: Many complex natural and physical systems exhibit patterns of interconnection that conform, approximately, to a network structure referred to as scale-free. Preferential attachment is one of many algorithms that have been introduced to model the growth and structure of scale-free networks. With so many different models of scale-free networks it is unclear what properties of scale-free networks are typical, and what properties are peculiarities of a particular growth or construction process. We propose a simple maximum entropy process which provides the best representation of what are typical properties of scale-free networks, and provides a standard against which real and algorithmically generated networks can be compared. As an example we consider preferential attachment and find that this particular growth model does not yield typical realizations of scale-free networks. In particular, the widely discussed "fragility" of scale-free networks is actually found to be due to the peculiar "hub-centric" structure of preferential attachment networks. We provide a method to generate or remove this latent hub-centric bias --- thereby demonstrating exactly which features of preferential attachment networks are atypical of the broader class of scale-free networks. We are also able to statistically demonstrate whether real networks are typical realizations of scale-free networks, or networks with that particular degree distribution; using a new surrogate generation method for complex networks, exactly analogous the the widely used surrogate tests of nonlinear time series analysis.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.