Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Infinite probability computation by cyclic explanation graphs (1309.0339v2)

Published 2 Sep 2013 in cs.PL

Abstract: Tabling in logic programming has been used to eliminate redundant computation and also to stop infinite loop. In this paper we investigate another possibility of tabling, i.e. to compute an infinite sum of probabilities for probabilistic logic programs. Using PRISM, a logic-based probabilistic modeling language with a tabling mechanism, we generalize prefix probability computation for probabilistic context free grammars (PCFGs) to probabilistic logic programs. Given a top-goal, we search for all proofs with tabling and obtain an explanation graph which compresses them and may be cyclic. We then convert the explanation graph to a set of linear probability equations and solve them by matrix operation. The solution gives us the probability of the top-goal, which, in nature, is an infinite sum of probabilities. Our general approach to prefix probability computation through tabling not only allows to deal with non-PCFGs such as probabilistic left-corner grammars (PLCGs) but has applications such as plan recognition and probabilistic model checking and makes it possible to compute probability for probabilistic models describing cyclic relations. To appear in Theory and Practice of Logic Programming (TPLP).

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.