Papers
Topics
Authors
Recent
2000 character limit reached

Choosability of Graphs with Bounded Order: Ohba's Conjecture and Beyond (1309.0225v1)

Published 1 Sep 2013 in math.CO and cs.DM

Abstract: The \emph{choice number} of a graph $G$, denoted $\ch(G)$, is the minimum integer $k$ such that for any assignment of lists of size $k$ to the vertices of $G$, there is a proper colouring of $G$ such that every vertex is mapped to a colour in its list. For general graphs, the choice number is not bounded above by a function of the chromatic number. In this thesis, we prove a conjecture of Ohba which asserts that $\ch(G)=\chi(G)$ whenever $|V(G)|\leq 2\chi(G)+1$. We also prove a strengthening of Ohba's Conjecture which is best possible for graphs on at most $3\chi(G)$ vertices, and pose several conjectures related to our work.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.