Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Choosability of Graphs with Bounded Order: Ohba's Conjecture and Beyond (1309.0225v1)

Published 1 Sep 2013 in math.CO and cs.DM

Abstract: The \emph{choice number} of a graph $G$, denoted $\ch(G)$, is the minimum integer $k$ such that for any assignment of lists of size $k$ to the vertices of $G$, there is a proper colouring of $G$ such that every vertex is mapped to a colour in its list. For general graphs, the choice number is not bounded above by a function of the chromatic number. In this thesis, we prove a conjecture of Ohba which asserts that $\ch(G)=\chi(G)$ whenever $|V(G)|\leq 2\chi(G)+1$. We also prove a strengthening of Ohba's Conjecture which is best possible for graphs on at most $3\chi(G)$ vertices, and pose several conjectures related to our work.

Citations (11)

Summary

We haven't generated a summary for this paper yet.