Choosability of Graphs with Bounded Order: Ohba's Conjecture and Beyond (1309.0225v1)
Abstract: The \emph{choice number} of a graph $G$, denoted $\ch(G)$, is the minimum integer $k$ such that for any assignment of lists of size $k$ to the vertices of $G$, there is a proper colouring of $G$ such that every vertex is mapped to a colour in its list. For general graphs, the choice number is not bounded above by a function of the chromatic number. In this thesis, we prove a conjecture of Ohba which asserts that $\ch(G)=\chi(G)$ whenever $|V(G)|\leq 2\chi(G)+1$. We also prove a strengthening of Ohba's Conjecture which is best possible for graphs on at most $3\chi(G)$ vertices, and pose several conjectures related to our work.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.