Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Percolation on random networks with arbitrary k-core structure (1308.6537v3)

Published 29 Aug 2013 in physics.soc-ph, cond-mat.stat-mech, and cs.SI

Abstract: The k-core decomposition of a network has thus far mainly served as a powerful tool for the empirical study of complex networks. We now propose its explicit integration in a theoretical model. We introduce a Hard-core Random Network model that generates maximally random networks with arbitrary degree distribution and arbitrary k-core structure. We then solve exactly the bond percolation problem on the HRN model and produce fast and precise analytical estimates for the corresponding real networks. Extensive comparison with selected databases reveals that our approach performs better than existing models, while requiring less input information.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.