Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New bounds for circulant Johnson-Lindenstrauss embeddings (1308.6339v1)

Published 29 Aug 2013 in cs.IT, math.FA, and math.IT

Abstract: This paper analyzes circulant Johnson-Lindenstrauss (JL) embeddings which, as an important class of structured random JL embeddings, are formed by randomizing the column signs of a circulant matrix generated by a random vector. With the help of recent decoupling techniques and matrix-valued Bernstein inequalities, we obtain a new bound $k=O(\epsilon{-2}\log{(1+\delta)} (n))$ for Gaussian circulant JL embeddings. Moreover, by using the Laplace transform technique (also called Bernstein's trick), we extend the result to subgaussian case. The bounds in this paper offer a small improvement over the current best bounds for Gaussian circulant JL embeddings for certain parameter regimes and are derived using more direct methods.

Citations (19)

Summary

We haven't generated a summary for this paper yet.