Papers
Topics
Authors
Recent
2000 character limit reached

New bounds for circulant Johnson-Lindenstrauss embeddings

Published 29 Aug 2013 in cs.IT, math.FA, and math.IT | (1308.6339v1)

Abstract: This paper analyzes circulant Johnson-Lindenstrauss (JL) embeddings which, as an important class of structured random JL embeddings, are formed by randomizing the column signs of a circulant matrix generated by a random vector. With the help of recent decoupling techniques and matrix-valued Bernstein inequalities, we obtain a new bound $k=O(\epsilon{-2}\log{(1+\delta)} (n))$ for Gaussian circulant JL embeddings. Moreover, by using the Laplace transform technique (also called Bernstein's trick), we extend the result to subgaussian case. The bounds in this paper offer a small improvement over the current best bounds for Gaussian circulant JL embeddings for certain parameter regimes and are derived using more direct methods.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.