Papers
Topics
Authors
Recent
2000 character limit reached

Joint modeling of multiple time series via the beta process with application to motion capture segmentation (1308.4747v3)

Published 22 Aug 2013 in stat.ME and stat.ML

Abstract: We propose a Bayesian nonparametric approach to the problem of jointly modeling multiple related time series. Our model discovers a latent set of dynamical behaviors shared among the sequences, and segments each time series into regions defined by a subset of these behaviors. Using a beta process prior, the size of the behavior set and the sharing pattern are both inferred from data. We develop Markov chain Monte Carlo (MCMC) methods based on the Indian buffet process representation of the predictive distribution of the beta process. Our MCMC inference algorithm efficiently adds and removes behaviors via novel split-merge moves as well as data-driven birth and death proposals, avoiding the need to consider a truncated model. We demonstrate promising results on unsupervised segmentation of human motion capture data.

Citations (94)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.