Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive matching pursuit for off-grid compressed sensing

Published 20 Aug 2013 in eess.SP, cs.IT, and math.IT | (1308.4273v2)

Abstract: Compressive sensing (CS) can effectively recover a signal when it is sparse in some discrete atoms. However, in some applications, signals are sparse in a continuous parameter space, e.g., frequency space, rather than discrete atoms. Usually, we divide the continuous parameter into finite discrete grid points and build a dictionary from these grid points. However, the actual targets may not exactly lie on the grid points no matter how densely the parameter is grided, which introduces mismatch between the predefined dictionary and the actual one. In this article, a novel method, namely adaptive matching pursuit with constrained total least squares (AMP-CTLS), is proposed to find actual atoms even if they are not included in the initial dictionary. In AMP-CTLS, the grid and the dictionary are adaptively updated to better agree with measurements. The convergence of the algorithm is discussed, and numerical experiments demonstrate the advantages of AMP-CTLS.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.