Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The Price of Anarchy is Unbounded for Congestion Games with Superpolynomial Latency Costs (1308.4101v1)

Published 19 Aug 2013 in cs.GT

Abstract: We consider non-cooperative unsplittable congestion games where players share resources, and each player's strategy is pure and consists of a subset of the resources on which it applies a fixed weight. Such games represent unsplittable routing flow games and also job allocation games. The congestion of a resource is the sum of the weights of the players that use it and the player's cost function is the sum of the utilities of the resources on its strategy. The social cost is the total weighted sum of the player's costs. The quality of Nash equilibria is determined by the price of anarchy ($PoA$) which expresses how much worse is the social outcome in the worst equilibrium versus the optimal coordinated solution. In the literature the predominant work has only been on games with polynomial utility costs, where it has been proven that the price of anarchy is bounded by the degree of the polynomial. However, no results exist on general bounds for non-polynomial utility functions. Here, we consider general versions of these games in which the utility of each resource is an arbitrary non-decreasing function of the congestion. In particular, we consider a large family of superpolynomial utility functions which are asymptotically larger than any polynomial. We demonstrate that for every such function there exist games for which the price of anarchy is unbounded and increasing with the number of players (even if they have infinitesimal weights) while network resources remain fixed. We give tight lower and upper bounds which show this dependence on the number of players. Furthermore we provide an exact characterization of the $PoA$ of all congestion games whose utility costs are bounded above by a polynomial function. Heretofore such results existed only for games with polynomial cost functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.