Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Detection and Filtering of Collaborative Malicious Users in Reputation System using Quality Repository Approach (1308.3876v1)

Published 18 Aug 2013 in cs.SI, cs.IR, and physics.soc-ph

Abstract: Online reputation system is gaining popularity as it helps a user to be sure about the quality of a product/service he wants to buy. Nonetheless online reputation system is not immune from attack. Dealing with malicious ratings in reputation systems has been recognized as an important but difficult task. This problem is challenging when the number of true user's ratings is relatively small and unfair ratings plays majority in rated values. In this paper, we have proposed a new method to find malicious users in online reputation systems using Quality Repository Approach (QRA). We mainly concentrated on anomaly detection in both rating values and the malicious users. QRA is very efficient to detect malicious user ratings and aggregate true ratings. The proposed reputation system has been evaluated through simulations and it is concluded that the QRA based system significantly reduces the impact of unfair ratings and improve trust on reputation score with lower false positive as compared to other method used for the purpose.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.