Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Strict majority bootstrap percolation in the r-wheel (1308.3831v3)

Published 18 Aug 2013 in cs.SI and math.PR

Abstract: In this paper we study the strict majority bootstrap percolation process on graphs. Vertices may be active or passive. Initially, active vertices are chosen independently with probability p. Each passive vertex becomes active if at least half of its neighbors are active (and thereafter never changes its state). If at the end of the process all vertices become active then we say that the initial set of active vertices percolates on the graph. We address the problem of finding graphs for which percolation is likely to occur for small values of p. Specifically, we study a graph that we call r-wheel: a ring of n vertices augmented with a universal vertex where each vertex in the ring is connected to its r closest neighbors to the left and to its r closest neighbors to the right. We prove that the critical probability is 1/4. In other words, if p>1/4 then for large values of r percolation occurs with probability arbitrarily close to 1 as n goes to infinity. On the other hand, if p<1/4 then the probability of percolation is bounded away from 1.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.