On Sparsification for Computing Treewidth (1308.3665v1)
Abstract: We investigate whether an n-vertex instance (G,k) of Treewidth, asking whether the graph G has treewidth at most k, can efficiently be made sparse without changing its answer. By giving a special form of OR-cross-composition, we prove that this is unlikely: if there is an e > 0 and a polynomial-time algorithm that reduces n-vertex Treewidth instances to equivalent instances, of an arbitrary problem, with O(n{2-e}) bits, then NP is in coNP/poly and the polynomial hierarchy collapses to its third level. Our sparsification lower bound has implications for structural parameterizations of Treewidth: parameterizations by measures that do not exceed the vertex count, cannot have kernels with O(k{2-e}) bits for any e > 0, unless NP is in coNP/poly. Motivated by the question of determining the optimal kernel size for Treewidth parameterized by vertex cover, we improve the O(k3)-vertex kernel from Bodlaender et al. (STACS 2011) to a kernel with O(k2) vertices. Our improved kernel is based on a novel form of treewidth-invariant set. We use the q-expansion lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs whose vertex count is superquadratic in their vertex cover number.