Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Palindrome Recognition In The Streaming Model (1308.3466v3)

Published 15 Aug 2013 in cs.DS

Abstract: In the Palindrome Problem one tries to find all palindromes (palindromic substrings) in a given string. A palindrome is defined as a string which reads forwards the same as backwards, e.g., the string "racecar". A related problem is the Longest Palindromic Substring Problem in which finding an arbitrary one of the longest palindromes in the given string suffices. We regard the streaming version of both problems. In the streaming model the input arrives over time and at every point in time we are only allowed to use sublinear space. The main algorithms in this paper are the following: The first one is a one-pass randomized algorithm that solves the Palindrome Problem. It has an additive error and uses $O(\sqrt n$) space. The second algorithm is a two-pass algorithm which determines the exact locations of all longest palindromes. It uses the first algorithm as the first pass. The third algorithm is again a one-pass randomized algorithm, which solves the Longest Palindromic Substring Problem. It has a multiplicative error using only $O(\log(n))$ space. We also give two variants of the first algorithm which solve other related practical problems.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube