Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

H-infinity Optimal Approximation for Causal Spline Interpolation (1308.2737v1)

Published 13 Aug 2013 in cs.IT, cs.SY, math.IT, and math.OC

Abstract: In this paper, we give a causal solution to the problem of spline interpolation using H-infinity optimal approximation. Generally speaking, spline interpolation requires filtering the whole sampled data, the past and the future, to reconstruct the inter-sample values. This leads to non-causality of the filter, and this becomes a critical issue for real-time applications. Our objective here is to derive a causal system which approximates spline interpolation by H-infinity optimization for the filter. The advantage of H-infinity optimization is that it can address uncertainty in the input signals to be interpolated in design, and hence the optimized system has robustness property against signal uncertainty. We give a closed-form solution to the H-infinity optimization in the case of the cubic splines. For higher-order splines, the optimal filter can be effectively solved by a numerical computation. We also show that the optimal FIR (Finite Impulse Response) filter can be designed by an LMI (Linear Matrix Inequality), which can also be effectively solved numerically. A design example is presented to illustrate the result.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.