Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

H-infinity Optimal Approximation for Causal Spline Interpolation (1308.2737v1)

Published 13 Aug 2013 in cs.IT, cs.SY, math.IT, and math.OC

Abstract: In this paper, we give a causal solution to the problem of spline interpolation using H-infinity optimal approximation. Generally speaking, spline interpolation requires filtering the whole sampled data, the past and the future, to reconstruct the inter-sample values. This leads to non-causality of the filter, and this becomes a critical issue for real-time applications. Our objective here is to derive a causal system which approximates spline interpolation by H-infinity optimization for the filter. The advantage of H-infinity optimization is that it can address uncertainty in the input signals to be interpolated in design, and hence the optimized system has robustness property against signal uncertainty. We give a closed-form solution to the H-infinity optimization in the case of the cubic splines. For higher-order splines, the optimal filter can be effectively solved by a numerical computation. We also show that the optimal FIR (Finite Impulse Response) filter can be designed by an LMI (Linear Matrix Inequality), which can also be effectively solved numerically. A design example is presented to illustrate the result.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Masaaki Nagahara (48 papers)
  2. Yutaka Yamamoto (25 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.