Exponential Quantum-Classical Gaps in Multiparty Nondeterministic Communication Complexity (1308.2450v2)
Abstract: There are three different types of nondeterminism in quantum communication: i) $\nqp$-communication, ii) $\qma$-communication, and iii) $\qcma$-communication. In this \redout{paper} we show that multiparty $\nqp$-communication can be exponentially stronger than $\qcma$-communication. This also implies an exponential separation with respect to classical multiparty nondeterministic communication complexity. We argue that there exists a total function that is hard for $\qcma$-communication and easy for $\nqp$-communication. The proof of it involves an application of the pattern tensor method and a new lower bound for polynomial threshold degree. Another important consequence of this result is that nondeterministic rank can be exponentially lower than the discrepancy bound.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.