Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Depth-4 Lower Bounds, Determinantal Complexity : A Unified Approach (1308.1640v4)

Published 7 Aug 2013 in cs.CC

Abstract: Tavenas has recently proved that any n{O(1)}-variate and degree n polynomial in VP can be computed by a depth-4 circuit of size 2{O(\sqrt{n}\log n)}. So to prove VP not equal to VNP, it is sufficient to show that an explicit polynomial in VNP of degree n requires 2{\omega(\sqrt{n}\log n)} size depth-4 circuits. Soon after Tavenas's result, for two different explicit polynomials, depth-4 circuit size lower bounds of 2{\Omega(\sqrt{n}\log n)} have been proved Kayal et al. and Fournier et al. In particular, using combinatorial design Kayal et al.\ construct an explicit polynomial in VNP that requires depth-4 circuits of size 2{\Omega(\sqrt{n}\log n)} and Fournier et al.\ show that iterated matrix multiplication polynomial (which is in VP) also requires 2{\Omega(\sqrt{n}\log n)} size depth-4 circuits. In this paper, we identify a simple combinatorial property such that any polynomial f that satisfies the property would achieve similar circuit size lower bound for depth-4 circuits. In particular, it does not matter whether f is in VP or in VNP. As a result, we get a very simple unified lower bound analysis for the above mentioned polynomials. Another goal of this paper is to compare between our current knowledge of depth-4 circuit size lower bounds and determinantal complexity lower bounds. We prove the that the determinantal complexity of iterated matrix multiplication polynomial is \Omega(dn) where d is the number of matrices and n is the dimension of the matrices. So for d=n, we get that the iterated matrix multiplication polynomial achieves the current best known lower bounds in both fronts: depth-4 circuit size and determinantal complexity. To the best of our knowledge, a \Theta(n) bound for the determinantal complexity for the iterated matrix multiplication polynomial was known only for constant d>1 by Jansen.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.