Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Characterization of Elementary Trapping Sets of Variable-Regular LDPC Codes (1308.1259v1)

Published 6 Aug 2013 in cs.IT and math.IT

Abstract: In this paper, we study the graphical structure of elementary trapping sets (ETS) of variable-regular low-density parity-check (LDPC) codes. ETSs are known to be the main cause of error floor in LDPC coding schemes. For the set of LDPC codes with a given variable node degree $d_l$ and girth $g$, we identify all the non-isomorphic structures of an arbitrary class of $(a,b)$ ETSs, where $a$ is the number of variable nodes and $b$ is the number of odd-degree check nodes in the induced subgraph of the ETS. Our study leads to a simple characterization of dominant classes of ETSs (those with relatively small values of $a$ and $b$) based on short cycles in the Tanner graph of the code. For such classes of ETSs, we prove that any set ${\cal S}$ in the class is a layered superset (LSS) of a short cycle, where the term "layered" is used to indicate that there is a nested sequence of ETSs that starts from the cycle and grows, one variable node at a time, to generate ${\cal S}$. This characterization corresponds to a simple search algorithm that starts from the short cycles of the graph and finds all the ETSs with LSS property in a guaranteed fashion. Specific results on the structure of ETSs are presented for $d_l = 3, 4, 5, 6$, $g = 6, 8$ and $a, b \leq 10$ in this paper. The results of this paper can be used for the error floor analysis and for the design of LDPC codes with low error floors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mehdi Karimi (12 papers)
  2. Amir H. Banihashemi (35 papers)
Citations (67)

Summary

We haven't generated a summary for this paper yet.