Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Space complexity of list H-colouring: a dichotomy (1308.0180v1)

Published 1 Aug 2013 in cs.CC, cs.DM, and math.CO

Abstract: The Dichotomy Conjecture for constraint satisfaction problems (CSPs) states that every CSP is in P or is NP-complete (Feder-Vardi, 1993). It has been verified for conservative problems (also known as list homomorphism problems) by A. Bulatov (2003). We augment this result by showing that for digraph templates H, every conservative CSP, denoted LHOM(H), is solvable in logspace or is hard for NL. More precisely, we introduce a digraph structure we call a circular N, and prove the following dichotomy: if H contains no circular N then LHOM(H) admits a logspace algorithm, and otherwise LHOM(H) is hard for NL. Our algorithm operates by reducing the lists in a complex manner based on a novel decomposition of an auxiliary digraph, combined with repeated applications of Reingold's algorithm for undirected reachability (2005). We also prove an algebraic version of this dichotomy: the digraphs without a circular N are precisely those that admit a finite chain of polymorphisms satisfying the Hagemann-Mitschke identities. This confirms a conjecture of Larose and Tesson (2007) for LHOM(H). Moreover, we show that the presence of a circular N can be decided in time polynomial in the size of H.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.