Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Size-Sensitive Discrepancy Bound for Set Systems of Bounded Primal Shatter Dimension (1307.8139v1)

Published 30 Jul 2013 in cs.CG and cs.DS

Abstract: Let $(X,\S)$ be a set system on an $n$-point set $X$. The \emph{discrepancy} of $\S$ is defined as the minimum of the largest deviation from an even split, over all subsets of $S \in \S$ and two-colorings $\chi$ on $X$. We consider the scenario where, for any subset $X' \subseteq X$ of size $m \le n$ and for any parameter $1 \le k \le m$, the number of restrictions of the sets of $\S$ to $X'$ of size at most $k$ is only $O(m{d_1} k{d-d_1})$, for fixed integers $d > 0$ and $1 \le d_1 \le d$ (this generalizes the standard notion of \emph{bounded primal shatter dimension} when $d_1 = d$). In this case we show that there exists a coloring $\chi$ with discrepancy bound $O{*}(|S|{1/2 - d_1/(2d)} n{(d_1 - 1)/(2d)})$, for each $S \in \S$, where $O{*}(\cdot)$ hides a polylogarithmic factor in $n$. This bound is tight up to a polylogarithmic factor \cite{Mat-95, Mat-99} and the corresponding coloring $\chi$ can be computed in expected polynomial time using the very recent machinery of Lovett and Meka for constructive discrepancy minimization \cite{LM-12}. Our bound improves and generalizes the bounds obtained from the machinery of Har-Peled and Sharir \cite{HS-11} (and the follow-up work in \cite{SZ-12}) for points and halfspaces in $d$-space for $d \ge 3$.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)