Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Mammogram image Breast Region Extraction and Removal of Pectoral Muscle (1307.7474v1)

Published 29 Jul 2013 in cs.CV

Abstract: Currently Mammography is a most effective imaging modality used by radiologists for the screening of breast cancer. Finding an accurate, robust and efficient breast region segmentation technique still remains a challenging problem in digital mammography. Extraction of the breast profile region and the removal of pectoral muscle are essential pre-processing steps in Computer Aided Diagnosis (CAD) system for the diagnosis of breast cancer. Primarily it allows the search for abnormalities to be limited to the region of the breast tissue without undue influence from the background of the mammogram. The presence of pectoral muscle in mammograms biases detection procedures, which recommends removing the pectoral muscle during mammogram image pre-processing. The presence of pectoral muscle in mammograms may disturb or influence the detection of breast cancer as the pectoral muscle and mammographic parenchymas appear similar. The goal of breast region extraction is reducing the image size without losing anatomic information, it improve the accuracy of the overall CAD system. The main objective of this study is to propose an automated method to identify the pectoral muscle in Medio-Lateral Oblique (MLO) view mammograms. In this paper, we proposed histogram based 8-neighborhood connected component labelling method for breast region extraction and removal of pectoral muscle. The proposed method is evaluated by using the mean values of accuracy and error. The comparative analysis shows that the proposed method identifies the breast region more accurately.

Citations (32)

Summary

We haven't generated a summary for this paper yet.