Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards an Efficient Discovery of the Topological Representative Subgraphs (1307.7411v3)

Published 28 Jul 2013 in cs.DB

Abstract: With the emergence of graph databases, the task of frequent subgraph discovery has been extensively addressed. Although the proposed approaches in the literature have made this task feasible, the number of discovered frequent subgraphs is still very high to be efficiently used in any further exploration. Feature selection for graph data is a way to reduce the high number of frequent subgraphs based on exact or approximate structural similarity. However, current structural similarity strategies are not efficient enough in many real-world applications, besides, the combinatorial nature of graphs makes it computationally very costly. In order to select a smaller yet structurally irredundant set of subgraphs, we propose a novel approach that mines the top-k topological representative subgraphs among the frequent ones. Our approach allows detecting hidden structural similarities that existing approaches are unable to detect such as the density or the diameter of the subgraph. In addition, it can be easily extended using any user defined structural or topological attributes depending on the sought properties. Empirical studies on real and synthetic graph datasets show that our approach is fast and scalable.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.