Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Information content versus word length in natural language: A reply to Ferrer-i-Cancho and Moscoso del Prado Martin [arXiv:1209.1751] (1307.6726v1)

Published 25 Jul 2013 in cs.CL, math.PR, and physics.data-an

Abstract: Recently, Ferrer i Cancho and Moscoso del Prado Martin [arXiv:1209.1751] argued that an observed linear relationship between word length and average surprisal (Piantadosi, Tily, & Gibson, 2011) is not evidence for communicative efficiency in human language. We discuss several shortcomings of their approach and critique: their model critically rests on inaccurate assumptions, is incapable of explaining key surprisal patterns in language, and is incompatible with recent behavioral results. More generally, we argue that statistical models must not critically rely on assumptions that are incompatible with the real system under study.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.