Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Matching-Constrained Active Contours (1307.6303v1)

Published 24 Jul 2013 in cs.CV

Abstract: In object segmentation by active contours, the initial contour is often required. Conventionally, the initial contour is provided by the user. This paper extends the conventional active contour model by incorporating feature matching in the formulation, which gives rise to a novel matching-constrained active contour. The numerical solution to the new optimization model provides an automated framework of object segmentation without user intervention. The main idea is to incorporate feature point matching as a constraint in active contour models. To this effect, we obtain a mathematical model of interior points to boundary contour such that matching of interior feature points gives contour alignment, and we formulate the matching score as a constraint to active contour model such that the feature matching of maximum score that gives the contour alignment provides the initial feasible solution to the constrained optimization model of segmentation. The constraint also ensures that the optimal contour does not deviate too much from the initial contour. Projected-gradient descent equations are derived to solve the constrained optimization. In the experiments, we show that our method is capable of achieving the automatic object segmentation, and it outperforms the related methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.