Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A scalable stage-wise approach to large-margin multi-class loss based boosting (1307.5497v1)

Published 21 Jul 2013 in cs.LG

Abstract: We present a scalable and effective classification model to train multi-class boosting for multi-class classification problems. Shen and Hao introduced a direct formulation of multi- class boosting in the sense that it directly maximizes the multi- class margin [C. Shen and Z. Hao, "A direct formulation for totally-corrective multi- class boosting", in Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2011]. The major problem of their approach is its high computational complexity for training, which hampers its application on real-world problems. In this work, we propose a scalable and simple stage-wise multi-class boosting method, which also directly maximizes the multi-class margin. Our approach of- fers a few advantages: 1) it is simple and computationally efficient to train. The approach can speed up the training time by more than two orders of magnitude without sacrificing the classification accuracy. 2) Like traditional AdaBoost, it is less sensitive to the choice of parameters and empirically demonstrates excellent generalization performance. Experimental results on challenging multi-class machine learning and vision tasks demonstrate that the proposed approach substantially improves the convergence rate and accuracy of the final visual detector at no additional computational cost compared to existing multi-class boosting.

Citations (15)

Summary

We haven't generated a summary for this paper yet.