Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Random Binary Mappings for Kernel Learning and Efficient SVM (1307.5161v2)

Published 19 Jul 2013 in cs.CV, cs.LG, and stat.ML

Abstract: Support Vector Machines (SVMs) are powerful learners that have led to state-of-the-art results in various computer vision problems. SVMs suffer from various drawbacks in terms of selecting the right kernel, which depends on the image descriptors, as well as computational and memory efficiency. This paper introduces a novel kernel, which serves such issues well. The kernel is learned by exploiting a large amount of low-complex, randomized binary mappings of the input feature. This leads to an efficient SVM, while also alleviating the task of kernel selection. We demonstrate the capabilities of our kernel on 6 standard vision benchmarks, in which we combine several common image descriptors, namely histograms (Flowers17 and Daimler), attribute-like descriptors (UCI, OSR, and a-VOC08), and Sparse Quantization (ImageNet). Results show that our kernel learning adapts well to the different descriptors types, achieving the performance of the kernels specifically tuned for each image descriptor, and with similar evaluation cost as efficient SVM methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.