Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Polynomiality for Bin Packing with a Constant Number of Item Types (1307.5108v2)

Published 19 Jul 2013 in cs.DS, cs.CG, and math.CO

Abstract: We consider the bin packing problem with d different item sizes s_i and item multiplicities a_i, where all numbers are given in binary encoding. This problem formulation is also known as the 1-dimensional cutting stock problem. In this work, we provide an algorithm which, for constant d, solves bin packing in polynomial time. This was an open problem for all d >= 3. In fact, for constant d our algorithm solves the following problem in polynomial time: given two d-dimensional polytopes P and Q, find the smallest number of integer points in P whose sum lies in Q. Our approach also applies to high multiplicity scheduling problems in which the number of copies of each job type is given in binary encoding and each type comes with certain parameters such as release dates, processing times and deadlines. We show that a variety of high multiplicity scheduling problems can be solved in polynomial time if the number of job types is constant.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube