Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Lower Complexity Bounds for Large-Scale Smooth Convex Optimization (1307.5001v4)

Published 18 Jul 2013 in math.OC and cs.CC

Abstract: We derive lower bounds on the black-box oracle complexity of large-scale smooth convex minimization problems, with emphasis on minimizing smooth (with Holder continuous, with a given exponent and constant, gradient) convex functions over high-dimensional ||.||p-balls, 1<=p<=\infty. Our bounds turn out to be tight (up to logarithmic in the design dimension factors), and can be viewed as a substantial extension of the existing lower complexity bounds for large-scale convex minimization covering the nonsmooth case and the 'Euclidean' smooth case (minimization of convex functions with Lipschitz continuous gradients over Euclidean balls). As a byproduct of our results, we demonstrate that the classical Conditional Gradient algorithm is near-optimal, in the sense of Information-Based Complexity Theory, when minimizing smooth convex functions over high-dimensional ||.||\infty-balls and their matrix analogies -- spectral norm balls in the spaces of square matrices.

Citations (78)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.