Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lorentzian Iterative Hard Thresholding: Robust Compressed Sensing with Prior Information (1307.4700v1)

Published 17 Jul 2013 in cs.IT and math.IT

Abstract: Commonly employed reconstruction algorithms in compressed sensing (CS) use the $L_2$ norm as the metric for the residual error. However, it is well-known that least squares (LS) based estimators are highly sensitive to outliers present in the measurement vector leading to a poor performance when the noise no longer follows the Gaussian assumption but, instead, is better characterized by heavier-than-Gaussian tailed distributions. In this paper, we propose a robust iterative hard Thresholding (IHT) algorithm for reconstructing sparse signals in the presence of impulsive noise. To address this problem, we use a Lorentzian cost function instead of the $L_2$ cost function employed by the traditional IHT algorithm. We also modify the algorithm to incorporate prior signal information in the recovery process. Specifically, we study the case of CS with partially known support. The proposed algorithm is a fast method with computational load comparable to the LS based IHT, whilst having the advantage of robustness against heavy-tailed impulsive noise. Sufficient conditions for stability are studied and a reconstruction error bound is derived. We also derive sufficient conditions for stable sparse signal recovery with partially known support. Theoretical analysis shows that including prior support information relaxes the conditions for successful reconstruction. Simulation results demonstrate that the Lorentzian-based IHT algorithm significantly outperform commonly employed sparse reconstruction techniques in impulsive environments, while providing comparable performance in less demanding, light-tailed environments. Numerical results also demonstrate that the partially known support inclusion improves the performance of the proposed algorithm, thereby requiring fewer samples to yield an approximate reconstruction.

Citations (69)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube