Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

RSP-Based Analysis for Sparsest and Least $\ell_1$-Norm Solutions to Underdetermined Linear Systems (1307.4579v1)

Published 17 Jul 2013 in cs.IT and math.IT

Abstract: Recently, the worse-case analysis, probabilistic analysis and empirical justification have been employed to address the fundamental question: When does $\ell_1$-minimization find the sparsest solution to an underdetermined linear system? In this paper, a deterministic analysis, rooted in the classic linear programming theory, is carried out to further address this question. We first identify a necessary and sufficient condition for the uniqueness of least $\ell_1$-norm solutions to linear systems. From this condition, we deduce that a sparsest solution coincides with the unique least $\ell_1$-norm solution to a linear system if and only if the so-called \emph{range space property} (RSP) holds at this solution. This yields a broad understanding of the relationship between $\ell_0$- and $\ell_1$-minimization problems. Our analysis indicates that the RSP truly lies at the heart of the relationship between these two problems. Through RSP-based analysis, several important questions in this field can be largely addressed. For instance, how to efficiently interpret the gap between the current theory and the actual numerical performance of $\ell_1$-minimization by a deterministic analysis, and if a linear system has multiple sparsest solutions, when does $\ell_1$-minimization guarantee to find one of them? Moreover, new matrix properties (such as the \emph{RSP of order $K$} and the \emph{Weak-RSP of order $K$}) are introduced in this paper, and a new theory for sparse signal recovery based on the RSP of order $K$ is established.

Citations (62)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube