Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Universally Elevating the Phase Transition Performance of Compressed Sensing: Non-Isometric Matrices are Not Necessarily Bad Matrices (1307.4502v1)

Published 17 Jul 2013 in cs.IT, math.IT, math.OC, and stat.ML

Abstract: In compressed sensing problems, $\ell_1$ minimization or Basis Pursuit was known to have the best provable phase transition performance of recoverable sparsity among polynomial-time algorithms. It is of great theoretical and practical interest to find alternative polynomial-time algorithms which perform better than $\ell_1$ minimization. \cite{Icassp reweighted l_1}, \cite{Isit reweighted l_1}, \cite{XuScaingLaw} and \cite{iterativereweightedjournal} have shown that a two-stage re-weighted $\ell_1$ minimization algorithm can boost the phase transition performance for signals whose nonzero elements follow an amplitude probability density function (pdf) $f(\cdot)$ whose $t$-th derivative $f{t}(0) \neq 0$ for some integer $t \geq 0$. However, for signals whose nonzero elements are strictly suspended from zero in distribution (for example, constant-modulus, only taking values $+d$' or$-d$' for some nonzero real number $d$), no polynomial-time signal recovery algorithms were known to provide better phase transition performance than plain $\ell_1$ minimization, especially for dense sensing matrices. In this paper, we show that a polynomial-time algorithm can universally elevate the phase-transition performance of compressed sensing, compared with $\ell_1$ minimization, even for signals with constant-modulus nonzero elements. Contrary to conventional wisdoms that compressed sensing matrices are desired to be isometric, we show that non-isometric matrices are not necessarily bad sensing matrices. In this paper, we also provide a framework for recovering sparse signals when sensing matrices are not isometric.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.