Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Ameba-inspired Self-organizing Particle Systems (1307.4259v1)

Published 16 Jul 2013 in cs.DC

Abstract: Particle systems are physical systems of simple computational particles that can bond to neighboring particles and use these bonds to move from one spot to another (non-occupied) spot. These particle systems are supposed to be able to self-organize in order to adapt to a desired shape without any central control. Self-organizing particle systems have many interesting applications like coating objects for monitoring and repair purposes and the formation of nano-scale devices for surgery and molecular-scale electronic structures. While there has been quite a lot of systems work in this area, especially in the context of modular self-reconfigurable robotic systems, only very little theoretical work has been done in this area so far. We attempt to bridge this gap by proposing a model inspired by the behavior of ameba that allows rigorous algorithmic research on self-organizing particle systems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.