Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity and Approximation of the Continuous Network Design Problem (1307.4258v2)

Published 16 Jul 2013 in cs.GT, cs.DS, and math.OC

Abstract: We revisit a classical problem in transportation, known as the continuous (bilevel) network design problem, CNDP for short. We are given a graph for which the latency of each edge depends on the ratio of the edge flow and the capacity installed. The goal is to find an optimal investment in edge capacities so as to minimize the sum of the routing cost of the induced Wardrop equilibrium and the investment cost. While this problem is considered as challenging in the literature, its complexity status was still unknown. We close this gap showing that CNDP is strongly NP-complete and APX-hard, both on directed and undirected networks and even for instances with affine latencies. As for the approximation of the problem, we first provide a detailed analysis for a heuristic studied by Marcotte for the special case of monomial latency functions (Mathematical Programming, Vol.~34, 1986). Specifically, we derive a closed form expression of its approximation guarantee for arbitrary sets S of allowed latency functions. Second, we propose a different approximation algorithm and show that it has the same approximation guarantee. As our final -- and arguably most interesting -- result regarding approximation, we show that using the better of the two approximation algorithms results in a strictly improved approximation guarantee for which we give a closed form expression. For affine latencies, e.g., this algorithm achieves a 1.195-approximation which improves on the 5/4 that has been shown before by Marcotte. We finally discuss the case of hard budget constraints on the capacity investment.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Martin Gairing (15 papers)
  2. Tobias Harks (31 papers)
  3. Max Klimm (41 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.