Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reconstruction of gene regulatory network of colon cancer using information theoretic approach (1307.3712v1)

Published 14 Jul 2013 in cs.CE, cs.ET, cs.SY, and q-bio.MN

Abstract: Reconstruction of gene regulatory networks or 'reverse-engineering' is a process of identifying gene interaction networks from experimental microarray gene expression profile through computation techniques. In this paper, we tried to reconstruct cancer-specific gene regulatory network using information theoretic approach - mutual information. The considered microarray data consists of large number of genes with 20 samples - 12 samples from colon cancer patient and 8 from normal cell. The data has been preprocessed and normalized. A t-test statistics has been applied to filter differentially expressed genes. The interaction between filtered genes has been computed using mutual information and ten different networks has been constructed with varying number of interactions ranging from 30 to 500. We performed the topological analysis of the reconstructed network, revealing a large number of interactions in colon cancer. Finally, validation of the inferred results has been done with available biological databases and literature.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube