Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Finding the Minimum-Weight k-Path (1307.2415v1)

Published 9 Jul 2013 in cs.DS

Abstract: Given a weighted $n$-vertex graph $G$ with integer edge-weights taken from a range $[-M,M]$, we show that the minimum-weight simple path visiting $k$ vertices can be found in time $\tilde{O}(2k \poly(k) M n\omega) = O*(2k M)$. If the weights are reals in $[1,M]$, we provide a $(1+\varepsilon)$-approximation which has a running time of $\tilde{O}(2k \poly(k) n\omega(\log\log M + 1/\varepsilon))$. For the more general problem of $k$-tree, in which we wish to find a minimum-weight copy of a $k$-node tree $T$ in a given weighted graph $G$, under the same restrictions on edge weights respectively, we give an exact solution of running time $\tilde{O}(2k \poly(k) M n3) $ and a $(1+\varepsilon)$-approximate solution of running time $\tilde{O}(2k \poly(k) n3(\log\log M + 1/\varepsilon))$. All of the above algorithms are randomized with a polynomially-small error probability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.