Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finding the Minimum-Weight k-Path (1307.2415v1)

Published 9 Jul 2013 in cs.DS

Abstract: Given a weighted $n$-vertex graph $G$ with integer edge-weights taken from a range $[-M,M]$, we show that the minimum-weight simple path visiting $k$ vertices can be found in time $\tilde{O}(2k \poly(k) M n\omega) = O*(2k M)$. If the weights are reals in $[1,M]$, we provide a $(1+\varepsilon)$-approximation which has a running time of $\tilde{O}(2k \poly(k) n\omega(\log\log M + 1/\varepsilon))$. For the more general problem of $k$-tree, in which we wish to find a minimum-weight copy of a $k$-node tree $T$ in a given weighted graph $G$, under the same restrictions on edge weights respectively, we give an exact solution of running time $\tilde{O}(2k \poly(k) M n3) $ and a $(1+\varepsilon)$-approximate solution of running time $\tilde{O}(2k \poly(k) n3(\log\log M + 1/\varepsilon))$. All of the above algorithms are randomized with a polynomially-small error probability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.