Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Resolution Proof Transformation for Compression and Interpolation (1307.2028v3)

Published 8 Jul 2013 in cs.LO

Abstract: Verification methods based on SAT, SMT, and Theorem Proving often rely on proofs of unsatisfiability as a powerful tool to extract information in order to reduce the overall effort. For example a proof may be traversed to identify a minimal reason that led to unsatisfiability, for computing abstractions, or for deriving Craig interpolants. In this paper we focus on two important aspects that concern efficient handling of proofs of unsatisfiability: compression and manipulation. First of all, since the proof size can be very large in general (exponential in the size of the input problem), it is indeed beneficial to adopt techniques to compress it for further processing. Secondly, proofs can be manipulated as a flexible preprocessing step in preparation for interpolant computation. Both these techniques are implemented in a framework that makes use of local rewriting rules to transform the proofs. We show that a careful use of the rules, combined with existing algorithms, can result in an effective simplification of the original proofs. We have evaluated several heuristics on a wide range of unsatisfiable problems deriving from SAT and SMT test cases.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.