Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the bounds and achievability about the ODPC of $\mathcal{GRM}(2,m)^*$ over prime field for increasing message length (1307.0927v1)

Published 3 Jul 2013 in cs.IT and math.IT

Abstract: The optimum distance profiles of linear block codes were studied for increasing or decreasing message length while keeping the minimum distances as large as possible, especially for Golay codes and the second-order Reed-Muller codes, etc. Cyclic codes have more efficient encoding and decoding algorithms. In this paper, we investigate the optimum distance profiles with respect to the cyclic subcode chains (ODPCs) of the punctured generalized second-order Reed-Muller codes $\mathcal{GRM}(2,m)*$ which were applied in Power Control in OFDM Modulations in channels with synchronization, and so on. For this, two standards are considered in the inverse dictionary order, i.e., for increasing message length. Four lower bounds and upper bounds on ODPC are presented, where the lower bounds almost achieve the corresponding upper bounds in some sense. The discussions are over nonbinary prime field.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.