Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

BigDataBench: a Big Data Benchmark Suite from Web Search Engines (1307.0320v1)

Published 1 Jul 2013 in cs.IR and cs.DB

Abstract: This paper presents our joint research efforts on big data benchmarking with several industrial partners. Considering the complexity, diversity, workload churns, and rapid evolution of big data systems, we take an incremental approach in big data benchmarking. For the first step, we pay attention to search engines, which are the most important domain in Internet services in terms of the number of page views and daily visitors. However, search engine service providers treat data, applications, and web access logs as business confidentiality, which prevents us from building benchmarks. To overcome those difficulties, with several industry partners, we widely investigated the open source solutions in search engines, and obtained the permission of using anonymous Web access logs. Moreover, with two years' great efforts, we created a sematic search engine named ProfSearch (available from http://prof.ict.ac.cn). These efforts pave the path for our big data benchmark suite from search engines---BigDataBench, which is released on the web page (http://prof.ict.ac.cn/BigDataBench). We report our detailed analysis of search engine workloads, and present our benchmarking methodology. An innovative data generation methodology and tool are proposed to generate scalable volumes of big data from a small seed of real data, preserving semantics and locality of data. Also, we preliminarily report two case studies using BigDataBench for both system and architecture researches.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.