Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Hyperbolicity of Large-Scale Networks (1307.0031v1)

Published 28 Jun 2013 in physics.soc-ph and cs.SI

Abstract: Through detailed analysis of scores of publicly available data sets corresponding to a wide range of large-scale networks, from communication and road networks to various forms of social networks, we explore a little-studied geometric characteristic of real-life networks, namely their hyperbolicity. In smooth geometry, hyperbolicity captures the notion of negative curvature; within the more abstract context of metric spaces, it can be generalized as d-hyperbolicity. This generalized definition can be applied to graphs, which we explore in this report. We provide strong evidence that communication and social networks exhibit this fundamental property, and through extensive computations we quantify the degree of hyperbolicity of each network in comparison to its diameter. By contrast, and as evidence of the validity of the methodology, applying the same methods to the road networks shows that they are not hyperbolic, which is as expected. Finally, we present practical computational means for detection of hyperbolicity and show how the test itself may be scaled to much larger graphs than those we examined via renormalization group methodology. Using well-understood mechanisms, we provide evidence through synthetically generated graphs that hyperbolicity is preserved and indeed amplified by renormalization. This allows us to detect hyperbolicity in large networks efficiently, through much smaller renormalized versions. These observations indicate that d-hyperbolicity is a common feature of large-scale networks. We propose that d-hyperbolicity in conjunction with other local characteristics of networks, such as the degree distribution and clustering coefficients, provide a more complete unifying picture of networks, and helps classify in a parsimonious way what is otherwise a bewildering and complex array of features and characteristics specific to each natural and man-made network.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube