Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Simultaneous Discrimination Prevention and Privacy Protection in Data Publishing and Mining (1306.6805v1)

Published 28 Jun 2013 in cs.DB and cs.CR

Abstract: Data mining is an increasingly important technology for extracting useful knowledge hidden in large collections of data. There are, however, negative social perceptions about data mining, among which potential privacy violation and potential discrimination. Automated data collection and data mining techniques such as classification have paved the way to making automated decisions, like loan granting/denial, insurance premium computation. If the training datasets are biased in what regards discriminatory attributes like gender, race, religion, discriminatory decisions may ensue. In the first part of this thesis, we tackle discrimination prevention in data mining and propose new techniques applicable for direct or indirect discrimination prevention individually or both at the same time. We discuss how to clean training datasets and outsourced datasets in such a way that direct and/or indirect discriminatory decision rules are converted to legitimate (non-discriminatory) classification rules. In the second part of this thesis, we argue that privacy and discrimination risks should be tackled together. We explore the relationship between privacy preserving data mining and discrimination prevention in data mining to design holistic approaches capable of addressing both threats simultaneously during the knowledge discovery process. As part of this effort, we have investigated for the first time the problem of discrimination and privacy aware frequent pattern discovery, i.e. the sanitization of the collection of patterns mined from a transaction database in such a way that neither privacy-violating nor discriminatory inferences can be inferred on the released patterns. Moreover, we investigate the problem of discrimination and privacy aware data publishing, i.e. transforming the data, instead of patterns, in order to simultaneously fulfill privacy preservation and discrimination prevention.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube