Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs (1306.6593v4)
Abstract: We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph $G$ embedded on a surface of genus $g$ and a designated face $f$ bounded by a simple cycle of length $k$, uncovers a set $F \subseteq E(G)$ of size polynomial in $g$ and $k$ that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of $f$. We apply this general theorem to prove that: * given an unweighted graph $G$ embedded on a surface of genus $g$ and a terminal set $S \subseteq V(G)$, one can in polynomial time find a set $F \subseteq E(G)$ that contains an optimal Steiner tree $T$ for $S$ and that has size polynomial in $g$ and $|E(T)|$; * an analogous result holds for an optimal Steiner forest for a set $S$ of terminal pairs; * given an unweighted planar graph $G$ and a terminal set $S \subseteq V(G)$, one can in polynomial time find a set $F \subseteq E(G)$ that contains an optimal (edge) multiway cut $C$ separating $S$ and that has size polynomial in $|C|$. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.