Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs (1306.6593v4)

Published 27 Jun 2013 in cs.DS

Abstract: We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph $G$ embedded on a surface of genus $g$ and a designated face $f$ bounded by a simple cycle of length $k$, uncovers a set $F \subseteq E(G)$ of size polynomial in $g$ and $k$ that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of $f$. We apply this general theorem to prove that: * given an unweighted graph $G$ embedded on a surface of genus $g$ and a terminal set $S \subseteq V(G)$, one can in polynomial time find a set $F \subseteq E(G)$ that contains an optimal Steiner tree $T$ for $S$ and that has size polynomial in $g$ and $|E(T)|$; * an analogous result holds for an optimal Steiner forest for a set $S$ of terminal pairs; * given an unweighted planar graph $G$ and a terminal set $S \subseteq V(G)$, one can in polynomial time find a set $F \subseteq E(G)$ that contains an optimal (edge) multiway cut $C$ separating $S$ and that has size polynomial in $|C|$. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.