Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs (1306.6593v4)

Published 27 Jun 2013 in cs.DS

Abstract: We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted graph $G$ embedded on a surface of genus $g$ and a designated face $f$ bounded by a simple cycle of length $k$, uncovers a set $F \subseteq E(G)$ of size polynomial in $g$ and $k$ that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of $f$. We apply this general theorem to prove that: * given an unweighted graph $G$ embedded on a surface of genus $g$ and a terminal set $S \subseteq V(G)$, one can in polynomial time find a set $F \subseteq E(G)$ that contains an optimal Steiner tree $T$ for $S$ and that has size polynomial in $g$ and $|E(T)|$; * an analogous result holds for an optimal Steiner forest for a set $S$ of terminal pairs; * given an unweighted planar graph $G$ and a terminal set $S \subseteq V(G)$, one can in polynomial time find a set $F \subseteq E(G)$ that contains an optimal (edge) multiway cut $C$ separating $S$ and that has size polynomial in $|C|$. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.